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Summary

I Missing not at random (MNAR) models are the most realistic model class for
studying non-monotone clinical trial data (Little and Rubin, 2014)

I (1) introduce an MNAR model where the probability of missingness at a visit
depends on all unobserved outcomes prior to the visit, and all observed
outcomes after the visit

I Problem: This model is intractable for large K without further assumptions
I Idea: Develop computational methods to efficiently estimate this model

I Restrict to binary data
I Introduce a Markov restriction on dependencies
I Use directed acyclic graph (DAG) theory to derive a tractable recursive

identification and estimation strategy

The Unrestricted Robins Model
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I zk = (zk+1, ..., zK ) for k =
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2, . . . ,K ,

I zm
k = (zk+1, ..., zmin(k+m,K )) for k =
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Figure 1: Unrestricted model

Model Assumptions:

∀k ∈ 1, . . . ,K
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k ,Ok)

Identification in the Unrestricted Model
Theorem 1: p(Y (1)

k) in the unrestricted model is identified.
I By induction we can show that p(Y (1)

k ,Ok) is identified.
I For k = 0, this is p(O1) which is observed.
I Suppose identified for k = s. Then,
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(1)
s ,Rs = j ,Os)

I Rs = 1 is identified by induction.
I Rs = 0 is identified since
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(1)
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identified by induction assumption

I Issue: The proof relies on probability distributions over O(2K ) elements (K
binary variables) - inference for large K intractable!

The Restricted Robins Model

I Solution: Use Markov restrictions to avoid estimating high-dimensional
distributions - related to efficient calculation of causal effects in (2)

I Let m denote the Markov restriction. At time t ,
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Figure 2: m = 1

Model Assumptions:

∀k ∈ 1, . . . ,K
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I Remark: Since the unrestricted model is identified, the restricted model must
also be identified.

I Remark: p(Ri | Y (1)
m
k ,O

m
k ) is a probability distribution over O(22m) elements -

over large K is tractable for fixed m.
Theorem 2:
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m
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Estimation of the Restricted Model
The identification of the unrestricted model offers no insight into the estimation of
the restricted model that is linear in K for a fixed m.
I We derive a recursive estimation strategy.

I For fixed m, linear in K .
Base case:
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Application: Drug Use Abatement Dataset

I Study: National Institute of Drug Abuse Study No. CTN-0044 - evaluating
effectiveness of computer tool in outpatient substance abuse treatment.
Patient dropout is non-monotone, 20-25% missing.
I N = 500, K = 24
I Y : negative drug test (abstinence)

I Question: Evaluate effectiveness of treatment vs. control
I T =

∑24
k=1 E[Y

(1)
k ]

I Estimation: Discrete probability distributions estimated using random forests
I Use random forests to model p(OK | Om

K ),p(OK−1 | Om
K−1), . . . ,p(O1)

I Tune random forests to avoid positivity violations
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Figure 3: Expected abstinences over trial for varying m, with bootstrapped 95% CI (Nbootstrap = 500)
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Figure 4: Expected treatment effect for varying m, with bootstrapped 95% CI (Nbootstrap=500)
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