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Summary

» Missing not at random (MNAR) models are the most realistic model class for

studying non-monotone clinical trial data (Little and Rubin, 2014)

» (1) introduce an MNAR model where the probability of missingness at a visit

depends on all unobserved outcomes prior to the visit, and all observed
outcomes after the visit

» Problem: This model is intractable for large K without further assumptions
» ldea: Develop computational methods to efficiently estimate this model

Restrict to binary data

ntroduce a Markov restriction on dependencies

Use directed acyclic graph (DAG) theory to derive a tractable recursive
identification and estimation strategy
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Figure 1: Unrestricted model

Identification in the Unrestricted Model

Theorem 1: p(Y(),) in the unrestricted model is identified.

» By induction we can show that p(Y(1),, O,) is identified.
» For k = 0, this is p(O,) which is observed.
» Suppose identified for k = s. Then
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» Ry = 1 is identified by induction.
» Rs = 0 is identified since

identified by model assumption

N\
' N\

p(Ys 1, Y Rs=0,04) =p(Y{" | Rs =0, Y()g_4, O)

p( Y(1)S—17 RS — O)Qs)
—/_/

identified by induction assumption

» Issue: The proof relies on probability distributions over O(2X) elements (K
binary variables) - inference for large K intractable!

The Restricted Robins Model

» Solution: Use Markov restrictions to avoid estimating high-dimensional
distributions - related to efficient calculation of causal effects in (2)

» Let m denote the Markov restriction. At time t,
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Figure 2: m=1

» Remark: Since the unrestricted model is identified, the restricted model must
also be identified. .

» Remark: p(R;| Y('),, O is a probability distribution over O(22™) elements -
over large K is tractable for fixed m.
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Estimation of the Restricted Model

The identification of the unrestricted model offers no insight into the estimation of
the restricted model that is linear in K for a fixed m.

» We derive a recursive estimation strategy.
» For fixed m, linear in K.
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Inductive case: Assume that ;D(Y—,(++11 O7"") is identified. Then,
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Application: Drug Use Abatement Dataset

» Study: National Institute of Drug Abuse Study No. CTN-0044 - evaluating
effectiveness of computer tool in outpatient substance abuse treatment.
Patient dropout is non-monotone, 20-25% missing.

» N =500, K =24
» Y. negative drug test (abstinence)

» Question: Evaluate effectiveness of treatment vs. control
- T =2 BV

» Estimation: Discrete probability distributions estimated using random forests

» Use random forests to model p(Ok | O¥), p(Ok_1 | Ok _1), ..., p(O1)
» Tune random forests to avoid positivity violations
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Figure 3: Expected abstinences over trial for varying m, with bootstrapped 95% Cl (Nyootstrap = 500)
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Figure 4: Expected treatment effect for varying m, with bootstrapped 95% CI (Nyootstrap=500)
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